Properties of Highly Purified Leukotriene C4 Synthase of Guinea Pig Lung

Tanihiro Yoshimoto, Roy J. Soberman, Bernd Spur, and K. Frank Austen

Department of Medicine, Harvard Medical School; and Department of Rheumatology and Immunology, Brigham and Women's Hospital, Boston, Massachusetts 02115

Abstract

Leukotriene C₄ (LTC₄) synthase, which conjugates LTA₄ and LTA₄-methyl ester (LTA₄-me) with glutathione (GSH) to form LTC₄ and LTC₄-me, respectively, has been solubilized from the microsomes of guinea pig lung and purified 91-fold in four steps to a specific activity of 692 nmol/10 min per mg protein using LTA4-me as substrate. LTC4 synthase of guinea pig lung was separated from microsomal GSH S-transferase by Sepharose CL-4B chromatography and further purified by DEAE-Sephacel chromatography, agarose-butylamine chromatography, and DEAE-3SW fast-protein liquid chromatography. It was also differentiated from the microsomal GSH S-transferase, which utilized 1-chloro-2,4-dinitrobenzene as a substrate, by its heat lability and relative resistance to inhibition by Shexyl-GSH. The K_m value of guinea pig lung LTC₄ synthase for LTA₄ was 3 μ M and the $V_{\rm max}$ was 108 nmol/3 min per μ g; the K_m values for LTA₃ and LTA₅ were similar, and the V_{max} values were about one-half those obtained with LTA4. The conversion of LTA₄-me to LTC₄-me was competitively inhibited by LTA₃, LTA₄, and LTA₅, with respective K_i values of 1.5, 3.3, and 2.8 μ M, suggesting that these substrates were recognized by a common active site. IC₅₀ values for the inhibition of the conjugation of 20 μM LTA₄-me with 5 mM GSH were 2.1 μM and 0.3 μM for LTC₄ and LTC₃, respectively. In contrast, LTD₄ was substantially less inhibitory (IC₅₀ > 40 μM), and LTE₄ and LTB₄ had no effect on the enzyme, indicating that the mixed type product inhibition observed was specific for sulfidopeptide leukotrienes bearing the GSH moiety.

Introduction

Leukotriene (LT)¹ C₄ is the initial sulfidopeptide leukotriene that, together with its cleavage products, LTD₄ and LTE₄, comprises the activity described as slow reacting substance of

Address reprint requests to Dr. Austen, The Seeley G. Mudd Building, Room 604, 250 Longwood Avenue, Boston, MA 02115. Dr. Yoshimoto's present address is Department of Biochemistry, Tokushima University School of Medicine, Tokushima, 770 Japan.

Received for publication 5 August 1987 and in revised form 19 October 1987.

1. Abbreviations used in this paper: Buffer A, 20 mM Tris-HCl, pH 8.0, 1 mM EDTA, 5 mM 2-mercaptoethanol, 10% glycerol; FPLC, fast protein liquid chromatography; 5-HPETE, 5-hydroperoxy-eicosatetraenoic acid; LT, leukotriene; LTA₄, LTC₄, LTD₄, LTE₄, leukotrienes A₄, C₄, D₄, and E₄, respectively; LTA₄-me, LTA₄ methyl ester; RBL-1 rat basophilic leukemia.

© The American Society for Clinical Investigation, Inc. 0021-9738/88/02/0866/06 \$2.00 Volume 81, March 1988, 866-871

anaphylaxis (1-3). LTC₄ contracts nonvascular guinea pig smooth muscle such as ileum smooth muscle (3) and tracheal spirals (4) in vitro, and, when administered as an aerosol, compromises airflow in guinea pigs (5) and humans (6). Intravascular administration of LTC4 to rats decreases renal blood flow by constricting the vascular smooth muscle bed and reducing blood volume by increasing venular permeability (7). Guinea pig lung (8) and human lung fragments (9) respond to immunologic activation by producing sulfidopeptide leukotrienes; these products have also been obtained from more homogeneous cell sources such as human pulmonary mast cells (10) and canine tracheal epithelial cells (11). The initial step in the biosynthesis of LTC₄ is the conversion of arachidonic acid to 5-hydroperoxy-eicosatetraenoic acid (5-HPETE) by the enzyme 5-lipoxygenase (12-14), and the same enzyme then catalyzes the conversion of 5-HPETE to LTA₄ (15, 16). LTA₄ is then conjugated with glutathione (GSH) by the enzyme LTC₄ synthase to form LTC₄ (17, 18). LTC₄ is metabolized to LTD₄ by γ-glutamyl transpeptidase (19), and to LTE₄ by a variety of dipeptidases, including one in the specific granules of human polymorphonuclear leukocytes (20).

LTC₄ synthase has been previously purified threefold from the microsomes of rat basophilic leukemia (RBL-1) cells (18). We now report the 91-fold purification of LTC₄ synthase from guinea pig lung microsomes and its kinetic characterization and substrate specificity.

Methods

Materials. LTA4 methyl ester (LTA4-me) (21) and 14,15-LTA4-me (22) were provided by Dr. E. J. Corey of Harvard University (Cambridge, MA) and Dr. J. Rokach of Merck-Frosst, Canada Inc., respectively. The methyl esters of LTA₃ (23), LTA₅ (24), 5-epi-LTA₄, 6-epi-LTA₄, and 5-epi-, 6-epi-LTA₄ (25) were synthesized as described, and the lithium salts of these epoxide-leukotrienes were prepared (17). [14,15-3H]LTA₄-me (50 Ci/mmol) was obtained from New England Nuclear (Boston, MA); LTC₄, LTD₄, LTE₄, and LTC₄-me were synthesized as previously described (26). Arachidonic acid (NuCheck Prep, Inc., Elysian, MN), prostaglandin B₂ (PGB₂), 1-chloro-2,4-dinitrobenzene, GSH, 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (Hepes), bovine serum albumin, Triton X-102, deoxycholic acid (Sigma Chemical Co., St. Louis, MO), glycerol (Aldrich Chemical Co., Milwaukee, WI), 2-mercaptoethanol (Eastman Kodak Co., Rochester, NY), Sepharose CL-4B, diethylaminoethyl (DEAE)-Sephacel, Superose 12 (Pharmacia Fine Chemicals, Inc., Piscataway, NJ), DEAE-3SW (2.15 × 15 cm) (Bio-Rad Laboratories, Richmond, CA), and Agarosebutylamine (P.-L. Biochemicals, Milwaukee, WI) were purchased as

Preparation of microsomes from guinea pig lung. Lungs (~ 100 g from 30 animals) were collected in 50 ml of ice-cold 20 mM Tris-HCl buffer, pH 8.0, containing 1 mM EDTA and 5 mM 2-mercaptoeth-anol. The lungs were chopped into small pieces with scissors and the fragments rinsed once in ~ 250 ml of homogenization buffer and then resuspended in 5-vol wet weight of buffer and disrupted using a Tissuemizer (model SDT-1810; Tekmar Co., Cincinnati, OH). All subsequent steps were carried out at 4°C. The homogenate was centrifuged

J. Clin. Invest.

the supernatant was filtered through cheesecloth. The filtrate was centrifuged at 10,000~g for 10 min, and the resulting supernatant was centrifuged at 105,000~g for 60 min. The supernatant (cytosol) was removed, and the pellet was washed by homogenization, using a Potter-Elvejhem homogenizer in the same buffer, centrifuged at 105,000~g for 1 h, and resuspended in 1 vol of the same buffer by homogenization (microsomes). Protein concentration was determined by the method of Lowry et al. (27) after precipitation of the protein with 6% trichloroacetic acid and 0.012% deoxycholic acid. Bovine serum albumin was used as a standard.

Enzyme assays. For assay of LTC₄ synthase, the reaction contained 50 mM Hepes buffer at pH 7.6, 20 μM LTA₄-me (in 5 μl ethanol), 5 mM GSH and enzyme in a final volume of 0.5 ml. Assays were incubated for 10 min at 24°C except for the determination of kinetic parameters, for which the incubation time was shortened to 3 min to reflect the initial velocity. The reaction was terminated by the addition of 0.5 ml of a solvent mixture of methanol/acetonitrile/acetic acid (50:50:1, vol/vol/vol) containing PGB₂ (100 ng) as an internal standard (18). The resulting mixture was centrifuged at 18,000 g for 10 min. The extract (supernatant) of the reaction mixture was then injected onto an Ultrasphere-ODS column (5- μ m particles, 4.6 \times 250 mm) which was eluted with a solvent mixture of methanol/acetonitrile/water/acetic acid, pH 5.6 (13:5:8.1:0.9) (vol/vol/vol/vol); the column was run at a flow rate of 1 ml/min, and absorbance at 280 nm was continuously monitored. Retention times of PGB2 and LTC4-me in this system were 8.8 min and 12.2 min, respectively. One unit of LTC₄ synthase activity was defined as forming 1 nmol of LTC4-me per 10 min at 24°C. When LTA₄ (lithium salt in 5 µl ethanol) was used as a substrate, a solvent mixture of methanol/acetonitrile/water/acetic acid, pH 5.6 (5:5:8.1:0.9) (vol/vol/vol) was used. Retention times of the reference standards were 15.4 min (LTC₃), 9.1 min (LTC₄), 6.9 min (LTC₅), 8.3 min (14, 15-LTC₄), 9.3 min (5-epi-LTC₄), 9.4 min (6-epi-LTC₄), 9.2 min (5-epi-, 6-epi-LTC₄) and 16.4 min (PGB₂, internal standard). GSH-S-transferase activity was measured spectrophotometrically according to the method of Habig et al. (28) at pH 6.5 with 1-chloro-2,4-dinitrobenzene (1 mM) and GSH (1 mM) as substrates.

Results

Subcellular localization of LTC₄ synthase. The subcellular localization of LTC₄ synthase in guinea pig lung tissue homogenate was determined after differential centrifugation. Each subcellular fraction was incubated with 20 µM LTA4 in the presence of 5 mM GSH for 10 min at 24°C, and the extract of the reaction mixture was analyzed by reverse-phase high performance liquid chromatography (RP-HPLC). The 10,000 g pellet (Fig. 1 A) contained a small amount of the total activity of the homogenate. About 75% of the LTC₄ synthase activity was recovered in the microsomal fraction (Fig. 1 B), representing an 11-fold increase of specific activity over the homogenate. LTC4 was not produced if either GSH or the microsomes were omitted from the reaction mixture. Barely detectable amounts of LTC₄ were formed in the cytosol (Fig. 1 C). When the GSH S-transferase activity of the subcellular fractions was determined, with 1 mM 1-chloro-2,4-dinitrobenzene and 1 mM GSH as substrates, 91% of the total activity of the homogenate was recovered in the cytosolic fraction. The 10,000 g pellet and the microsomes accounted for 2% and 5% of the GSH S-transferase activity, respectively.

Purification of LTC₄ synthase. All isolation procedures were conducted at 4°C, and LTA₄-me was used as the substrate

Glycerol was added to microsomal suspensions of about 250 mg of protein in 70 ml at a final concentration of 20% (wt/vol) and Triton X-102 and deoxycholic acid were each added to a final concentration of 0.4%. The mixture was

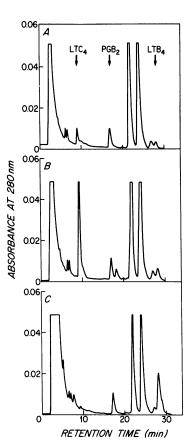


Figure 1. Biosynthesis of LTC₄ by incubation of subcellular fractions of guinea pig lung with 20 μM LTA₄ and 5 mM GSH. (A) 10,000 g pellet (130 µg of protein); (B) 105,000 g pellet (190 μ g of protein); (C) 105,000 g supernatant (704 μg of protein). Products were resolved by RP-HPLC and quantitated by integrated optical density at 280 nm. Retention times of authentic compounds are indicated by arrows.

stirred for 30 min followed by centrifugation at 105,000 g for 1 h. LTC₄ synthase was solubilized with a recovery of $51\pm7.2\%$ (mean \pm SD, n=4) of the initial activity of the microsomes. Although the enzyme could be solubilized with 0.4% Triton X-102 alone, the combination of a nonionic and an ionic detergent was used routinely for solubilization; this prevented the formation of mixed aggregates that interfered with the gel filtration chromatography.

35 ml of the supernatant, containing solubilized enzyme, was applied onto a Sepharose CL-4B column (4.4×50 cm) that had been equilibrated with 20 mM Tris-HCl buffer at pH 8.0, 1 mM EDTA, 5 mM 2-mercaptoethanol, and 10% glycerol (buffer A) containing 0.1% Triton X-102 and 0.1% deoxycholic acid. The column was eluted at a flow rate of 45 ml/h. Microsomal LTC₄ synthase from the solubilized guinea pig lung was resolved ($V_e = 550$ ml) from GSH S-transferase ($V_e = 630$ ml) by its greater apparent size (Fig. 2).

The peak fractions containing LTC₄ synthase activity (Fig. 2) were pooled and applied to a DEAE-Sephacel column (2.5 \times 4 cm) that had been equilibrated with buffer A containing 0.1% Triton X-102 and 0.1% deoxycholic acid. The column was washed with two column volumes of the same buffer and the flow-through fractions were collected (90 ml). LTC₄ synthase appeared in the effluent, whereas > 90% of total protein was retained, resulting in a 30-fold purification achieved in this step.

The DEAE-Sephacel flow-through was applied to an agarose-butylamine column $(2.5 \times 10\text{-cm})$ that had been equilibrated with buffer A. The column was washed with two column volumes of the same buffer and then eluted with buffer A containing 0.1% Triton X-102 and 0.1% deoxycholic acid. 6-ml fractions were collected and the eluate (30 ml) was frozen at -70° C. A duplicate purification was then performed and

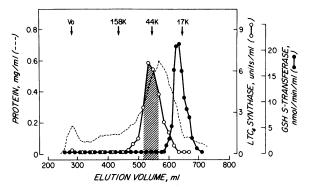


Figure 2. Gel filtration of 66 mg of the solubilized microsomes of guinea pig lung on a Sepharose CL-4B column $(4.4 \times 50 \text{ cm})$ in buffer A containing 0.1% deoxycholic acid and 0.1% Triton X-102. 8.5-ml fractions were collected and protein concentration (---), GSH S-transferase activity (\bullet), and LTC₄ synthase activity (\circ) were determined. The striped bar indicates the fractions pooled for further purification.

the two preparations of the enzyme were pooled to a 60-ml total volume.

The pooled enzyme preparation was injected onto a DEAE-3SW fast protein liquid chromatography (FPLC) column (2.15 × 15 cm) that was previously equilibrated with 50 mM potassium phosphate buffer at pH 8.0 containing 1 mM EDTA, 5 mM 2-mercaptoethanol, 10% glycerol, and 0.1% Triton X-102. The column was washed at a flow rate of 3 ml/min and was developed in a linear gradient (120 ml) of 0 to 0.2 M NaCl and 0 to 0.1% deoxycholic acid in the same buffer. LTC₄ synthase eluted at a salt concentration of 0.16 M and a deoxycholate concentration of 0.08% (Fig. 3). Gradients of both salt and deoxycholate were required to prevent the elution of LTC₄ synthase Triton micelles along with the bulk of the protein. Peak active fractions were pooled (15 ml), frozen at -70°C, and used as the source of purified LTC₄ synthase.

The yields from a representative purification of LTC₄ synthase from the microsomes of guinea pig lung are tabulated in Table I. In four separate purifications the final average specific activity was 697 U/mg of protein (533-844 U/mg) with an overall yield of 3% (2-6%, n = 4).

Properties of LTC₄ synthase. When 6 ml of the highly purified enzyme was applied onto a 2.3×46 -cm Superose 12 column, and eluted at a flow rate of 1 ml/min, a single peak of LTC₄ synthase activity filtered in a $M_{\rm T}$ range of 54,000-58,000 (Fig. 4 A and B). There was no appreciable loss of purified LTC₄ synthase activity for 2 wk upon storage at -70°C,

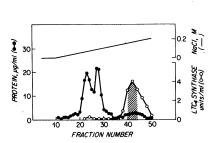


Figure 3. Elution profile of LTC₄ synthase from a DEAE-3SW column (2.15 × 15 cm) loaded with pooled active fractions from the agarose-butylamine step. 3-ml fractions were collected and protein concentrations (•) and LTC₄ synthase activity (o) were determined. The bar indicates the fractions used as the purified enzyme.

Table I. Representative Purification of Guinea Pig LTC₄ Synthase

Protein	Total activity	Yield	Specific activity	Purification
mg	U	%	U/mg	fold
251	1,907	100	7.6	1
184	1,140	60	6.2	0.8
74	398	21	5.4	0.7
6.0	986	51	164	22
2.8	640	34	229	30
0.078	54	3	692	91
	mg 251 184 74 6.0	Protein activity mg U 251 1,907 184 1,140 74 398 6.0 986 2.8 640	Protein activity Yield mg U % 251 1,907 100 184 1,140 60 74 398 21 6.0 986 51 2.8 640 34	Protein activity Yield activity mg U % U/mg 251 1,907 100 7.6 184 1,140 60 6.2 74 398 21 5.4 6.0 986 51 164 2.8 640 34 229

whereas approximately half of the enzyme activity was lost in 2 d at 4°C.

The time course of the LTC₄ synthase reaction using 1.8 μ g of purified enzyme was linear for the first 5 min, after which the reaction rate gradually decreased over the next 25 min (Fig. 5 A). However, further addition of 20 μM LTA₄-me at 20 min increased the rate of product formation appreciably, indicating that the LTC₄ synthase was not substantially inactivated during catalysis. The addition of bovine serum albumin (1 mg/ml) to the reaction mixture did not alter the time course of the LTC₄ synthase reaction. The rate of product formation was proportional to the amount of enzyme protein added to the reaction mixture from ~ 1.5 to 4.0 µg protein (Fig. 5 B), and all reactions were carried out within this range. The reaction rate increased as the pH of the reaction mixture was raised (Fig. 6), but above pH 8 nonenzymatic conjugation of GSH with LTA₄-me occurred. Thus, pH 7.6 was used routinely for the assays because at this pH nonenzymatic conjugation was negligible (18). S-hexyl-GSH inhibited microsomal GSH Stransferase obtained at the Sepharose CL-4B chromatography step in a dose-dependent manner over the range of 0 to 50 μ M with an IC₅₀ of 4.6 μM, whereas the purified LTC₄ synthase was unaffected at this concentration and was inhibited only 17% at 50 μ M. When both enzyme preparations were kept for 5 min over a range of temperatures from 25 to 60°C, LTC₄ synthase activity decreased by 44% at 35°C and by 96% at 45°C, whereas microsomal GSH S-transferase was stable up to 40°C and lost only 20% of the activity at 45°C.

The effect of GSH concentration on the LTC₄ synthase

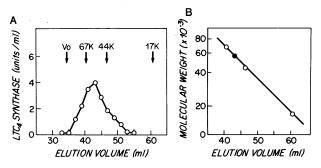


Figure 4. (A) Superose 12 gel filtration of LTC₄ synthase in buffer A containing 0.1% deoxycholate and 0.1% Triton X-102. 2-ml fractions were collected. (B) Determination of M_r of LTC₄ synthase. M_r standards (\circ) were: bovine serum albumin (67,000 M_r), ovalbumin (45,000 M_r) and myoglobin (17,000). LTC₄ synthase is represented by closed circles (\bullet).

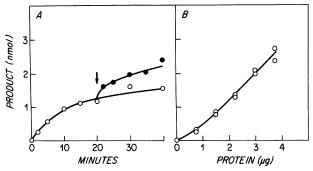


Figure 5. Time course (A) and protein dependency (B) of LTC₄ synthase reaction. (A) Purified enzyme was incubated with 20 μ M LTA₄-me for the periods indicated (O), and at 20 min (arrow) another 20 μ M of LTA₄-me was added (\bullet); (B) Varying amounts of the purified enzyme were incubated for 10 min with 20 μ M LTA₄-me and 5 mM GSH.

reaction with 20 μ M LTA₄-me and purified enzyme revealed saturation above 10 mM GSH and a K_m value of 2.3 mM by Lineweaver-Burk plots (Fig. 7).

Substrate specificity and kinetics of LTC4 synthase. Fig. 8 shows the specificity of a variety of epoxide substrates for LTC₄ synthase, when their concentration was varied in the presence of 5 mM GSH. The apparent $K_{\rm m}$ and $V_{\rm max}$ values for the highly purified enzyme were calculated to be 3 μ M and 108 nmol/3 min mg, respectively, by Lineweaver-Burk plots. LTA₃ and LTA₅ were about 50% as active as LTA₄ and had V_{max} values of 48 and 54 nmol/3 min/mg, and $K_{\rm m}$ values of 4.3 μM and 2.6 µM, respectively. The methyl ester of LTA₄ was found to have a $K_{\rm m}$ value of 16 μ M and $V_{\rm max}$ of 420 nmol/3 min/mg. 14,15-LTA4 was converted to its GSH conjugate by the LTC4 synthase with $K_{\rm m}$ and $V_{\rm max}$ values of 77 μM and 204 nmol/3 min per mg, respectively. LTC₄ synthase also catalyzed the conjugation of GSH with the epimers of LTA4 to produce corresponding epimers of LTC₄, and the $K_{\rm m}$ and $V_{\rm max}$ values for these epimers were 38 μ M for 5-epi-LTA₄ (V_{max} , 93 nmol/3 min per mg), 24 μ M for 6-epi-LTA₄ (V_{max} , 162 nmol/3 min per mg) and 27 μ M for 5-epi, 6-epi-LTA₄ ($V_{\rm max}$, 102 nmol/3 min per mg).

Inhibition of LTC₄ synthase. The action of purified LTC₄ synthase upon 20 μ M LTA₄-me in the presence of 5 mM GSH was inhibited in a dose-dependent manner by LTA₃, LTA₄, and LTA₅ (Fig. 9 A). The inhibition was determined kinetically in the presence of 0.5 μ M LTA₃, 3 μ M LTA₄, and 3 μ M LTA₅ and analyzed by double-reciprocal plots (Fig. 9 B). The inhibition was found to be competitive and the K_i values were

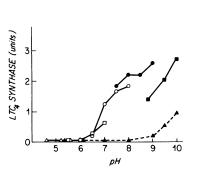


Figure 6. pH profile of LTC₄ synthase reaction. Purified enzyme was incubated with 20 μ M LTA₄-me and 5 mM GSH at various pHs, which were achieved with sodium acetate (Δ), potassium phosphate (\square), Hepes (\bigcirc), Tris (\bullet), and glycine-NaOH (\bullet) buffers at a concentration of 50 mM. Product formation in the absence of enzyme protein is depicted by the broken line (Δ).

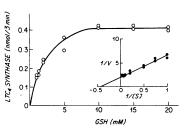


Figure 7. Effect of GSH concentration on LTC₄ synthase activity (0) in the reaction mixture with 20 μM LTA₄-me. The inset represents Lineweaver-Burk plots of corresponding points (e).

calculated to be 1.5 μ M for LTA₃, 3.3 μ M for LTA₄, and 2.8 μ M for LTA₅, respectively.

Inhibition of the LTC₄ synthase reaction by LTC₄, the product of the enzyme reaction with LTA4, was dose dependent and the IC₅₀ value was estimated to be 2.1 μ M (Fig. 10). Preincubation of the enzyme with 2 µM LTC₄ for up to 30 min did not alter the degree of inhibition, suggesting a reversible inhibition. 14,15-LTC4 also inhibited LTC4 synthase reaction with an IC₅₀ value of \sim 6 μ M. LTC₅, LTD₄, and LTC₄-me showed a less inhibitory effect on the enzyme, inhibiting the reaction between 30 and 40% at a concentration of 10 μ M. Arachidonic acid and 5-hydroxy-6,8,11,14-eicosatetraenoic acid were less inhibitory. LTE4 and LTB4 did not inhibit the reaction at 10-µM concentrations. In a separate experiment, in which the reaction of LTC₄ synthase with 20 μM LTA₄-me was carried out with varying concentrations of LTC₄ from 4-40 μM and analyzed by Lineweaver-Burk plots, the inhibition was of the mixed type with a K_i of 2.7 μ M.

Discussion

LTC₄ synthase of guinea pig lung microsomes was solubilized and purified to a specific activity of 697 U/mg by a four-step procedure that included Sepharose 4B filtration, DEAE-Sephacel chromatography, agarose-butylamine chromatography, and DEAE-3SW FPLC (Figs. 2 and 3; Table I). The utilization of a second detergent, deoxycholate, was critical in preventing the formation of large aggregates that resulted in the elution of enzyme activity in the void volume of the Sepharose CL-4B column. The final enzyme preparation was unstable after solubilization, especially at acidic pH. Therefore chromatography was conducted in the pH range of 7.6 to 8.0 and storage was at -70°C. The addition of glycerol and sulfhydryl compounds such as 2-mercaptoethanol partially protected the enzyme from inactivation, resulting in a half-life of 2 d for the final preparation of purified enzyme at 4°C and complete stability at −70°C for at least 2 wk. Gel filtration of purified LTC₄ synthase activity by Superose 12 gel filtration chromatography

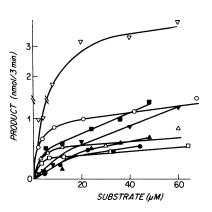


Figure 8. Substrate specificity of the LTC₄ synthase of guinea pig lung. Various epoxides were incubated with the purified enzyme for 3 min. The substrates employed were LTA₄ (♥), LTA₄-me (♥), LTA₃ (□), LTA₅ (△), 14,15-LTA₄ (○), 5-epi-LTA₄ (●), 6-epi-LTA₄ (●), and 5-epi-, 6-epi-LTA₄ (▲).

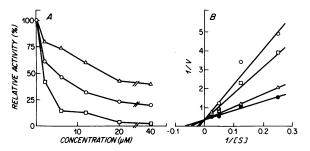


Figure 9. (A) Inhibition of LTC₄ synthase activity during a 3-min incubation with LTA₄-me and GSH by LTA₃ (\square), LTA₄ (\bigcirc), and LTA₅ (\triangle). The percent relative activity is expressed as the percentage of the LTC₄ synthase activity without any added compound which was 1.5 nmol/3 min; (B) Double-reciprocal plots of the data in which the incubations were carried out in the absence (\bullet) or presence of 0.5 μ M LTA₃ (\square), 3 μ M LTA₄ (\circ), and 3 μ M LTA₅ (\triangle).

indicated an apparent M_r of 54,000–58,000 (Fig. 4). The specific activity of the guinea pig lung microsomal LTC₄ synthase of 697 U/mg appears to be comparable to that of the two most active purified rat liver cytosolic isoenzymes of GSH S-transferase for conversion of LTA₄-me to LTC₄-me in the presence of GSH (29).

Subcellular localization of LTC₄ synthase and GSH Stransferase as examined using LTA4 and 1-chloro-2,4-dinitrobenzene as substrates, respectively, revealed that LTC4 synthase was associated with the microsomal fraction (Fig. 1), whereas GSH S-transferase was mostly present in the cytosolic fraction in guinea pig lung. Similar results were previously reported for RBL-1 cells (17, 18) and guinea pig lung (30) and indicate that tissue sources can be used for enzyme purification, thereby somewhat alleviating the problems of insufficient material for high purification and detailed kinetic studies. It has been reported that the microsomal GSH S-transferase of rat liver with the minimum M_r of 17,237 (31) presents as a trimer in the enzyme-detergent complex (129,300 M_r). The microsomal GSH S-transferase of guinea pig lung had an estimated M_r of 25,000–30,000 by gel filtration and was separated from microsomal LTC₄ synthase by gel filtration (Fig. 2). Whether the microsomal GSH transferase of guinea pig lung and LTC₄ synthase have similar molecular weights, but interact with detergents to form different-sized oligomers which are resolved by gel filtration is not known. The distinct natures of these microsomal enzymes were also demonstrated by their differential sensitivity to S-hexyl-GSH, an inhibitor of GSH S-transferase (32), and to modest heat.



Figure 10. Inhibition of LTC₄ synthase activity with LTA₄-me and GSH by LTC₃ (□), LTC₄ (o), LTC₅ (Δ), LTC₄-me (∇), 14,15-LTC₄ (▼), LTD₄ (■), LTB₄ (Φ), LTB₄ (Δ), 5-hydroxy-6,8,11,14-eicosatetraenoic acid (◊) and arachidonic acid (◊). In the experiments with LTC₄-me, LTE₄,

LTB₄ the reaction mixture was supplemented with [14,15-³H]LTA₄-me and the product was quantitated by liquid scintillation counting. The percent relative activity is expressed as the percentage of LTC₄ synthase activity without any added compound.

The time-course of LTA₄ conjugation with GSH showed a hyperbolic curve (Fig. 5 A), indicating that the reaction rate gradually decreased after 5 min. The reaction of the LTC₄ synthase with LTA₄ and GSH is apparently longer than that of LTA₄ hydrolase, which ceases to yield LTB₄ within 1-2 min (33, 34) because of irreversible inactivation. It should be noted that LTC₄ synthase, unlike LTA₄ hydrolase (33, 34), remained active during the course of reaction, because further addition of the substrate (LTA₄-me) augmented the production of LTC₄-me (Fig. 5 A, arrow). Since the half-life of LTA₄ was estimated to be < 0.1 min at 25°C (pH 7.4) (35), this unstable epoxide might be stabilized in its reaction with microsomal LTC₄ synthase by either the enzyme protein or the detergents that were present in the enzyme preparation. LTC₄ synthase exhibited a broad alkaline pH optimum (Fig. 6), and the greater activity of LTC₄ synthase at alkaline pH might be influenced by the improved stability of the substrate, as well as the enzyme, in this pH range relative to acidic conditions (36). The apparent K_m value (2.3 mM) of guinea pig LTC₄ synthase for GSH (Fig. 7) is comparable to that (3-6 mM) of LTC₄ synthase of RBL-1 cells (18).

Among the compounds examined as substrates for LTC₄ synthase (Fig. 8), LTA₄-me showed the highest V_{max} , and this may be explained by the hydrophobic nature of the ester as compared with the salt, since the protein is a membrane-associated enzyme and presumably has a hydrophobic region. However, the natural substrate, LTA₄, showed a lower $K_{\rm m}$ value than that of LTA4-me. The fact that the enzyme reacts with LTA₃ and LTA₅ gives an enzymological basis for the reports demonstrating the formation of LTC₃ (37, 38) and LTC₅ (39) from mouse mastocytoma and RBL-1 cells. In view of the fact that 5-epi-LTA₄ is less active than 6-epi-LTA₄, the configuration of C-5 of LTA₄ may be more important than C-6 for the recognition unit of LTC₄ synthase. The competitive inhibition by LTA₃, LTA₄, and LTA₅ of LTC₄ synthase reaction with LTA₄-me (Fig. 9) suggests that the conjugation of GSH with these substrates is catalyzed at the same active site of the enzyme. LTA₃ (40) and LTA₅ (41) were also shown to inhibit LTA₄ hydrolase of human neutrophils. The rank order of potency of the LTA₄ hydrolase inhibition is the same as that of LTC₄ synthase, namely, LTA₃ is the most potent inhibitor.

LTC₃ and LTC₄ were potent inhibitors of LTC₄ synthase using LTA₄-me as a substrate (Fig. 10). Since LTD₄, LTE₄, and LTB₄ showed significantly less or negligible inhibitory effects on LTC₄ synthase, the inhibition by LTC₄ appears to be product inhibition of the enzyme and is a property shared with most xenobiotic conjugating GSH transferases (42).

Acknowledgments

We are grateful to Guido Scatorchia and Lisa Abeshaus for expert technical assistance.

Supported in part by grants AI-22531, AI-22563, AI-23401, HL-36110, RR-01996, and AR-38638 from the National Institutes of Health, Bethesda, MD, and in part by a grant from the Hyde and Watson Foundation. Dr. Yoshimoto is a recipient of a fellowship from the Japanese Foundation of Metabolism and Diseases.

References

- 1. Kelleway, C. H., and E. R. Trethewie. 1940. The liberation of a slow-reacting-smooth muscle-stimulating-substance in anaphylaxis. Q. J. Exp. Physiol. Cogn. Med. Sci. 30:121-145.
 - 2. Brocklehurst, W. E. 1953. Occurrence of an unidentified sub-

- stance during anaphylactic shock in calf lung. J. Physiol. (Lond.). 129:16P-17P.
- 3. Murphy, R. C., S. Hammarstrom, and B. Samuelsson. 1979. Leukotriene C: a slow reacting substance from murine mastocytoma cells. *Proc. Natl. Acad. Sci. USA*. 76:4275–4279.
- 4. Drazen, J. M., K. F. Austen, R. A. Lewis, D. A. Clark, G. Goto, A. Marfat, and E. J. Corey. 1980. Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. *Proc. Natl. Acad. Sci. USA*. 77:4354–4358.
- 5. Leitch, A. G., E. J. Corey, K. F. Austen, and J. M. Drazen. 1983. Indomethacin potentiates the pulmonary response to aerosol leukotriene C_4 in the guinea pig. Am. Rev. Respir. Dis. 128:639-643.
- 6. Weiss, J. W., J. M. Drazen, N. Coles, E. R. McFadden, P. F. Weller, E. J. Corey, R. A. Lewis, and K. F. Austen. 1982. Bronchoconstricter effects of Leukotriene C in humans. *Science (Wash. DC)*. 216:186–187.
- 7. Badr, K. F., C. Baylis, J. M. Pfeffer, M. A. Pfeffer, R. J. Soberman, R. A. Lewis, K. F. Austen, E. J. Corey, and B. M. Brenner. 1984. Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C₄ in the rat. *Circ. Res.* 54:492–499.
- 8. Morris, H. R., G. W. Taylor, P. J. Piper, and J. R. Tippins. 1980. Structure of slow reacting substance of anaphylaxis from guinea pig lung. *Nature (Lond.)*. 285:104–108.
- 9. Lewis, R. A., K. F. Austen, J. M. Drazen, D. A. Clark, A. Marfat, and E. J. Corey. 1980. Slow reacting substances of anaphylaxis: identification of leukotriene C-1 and D from human and rat sources. *Proc. Natl. Acad. Sci. USA*. 77:3710-3714.
- 10. Peters, S. P., D. W. MacGlashan, Jr., E. S. Schulman, R. P. Schleimer, E. C. Hayes, J. Rokach, N. F. Adkinson, Jr., and L. M. Lichtenstein. 1984. Arachodonic acid metabolism in purified human lung mast cells. *J. Immunol.* 132:1972–1979.
- 11. Eling, T. E., R. M. Danilowicz, D. C. Kenke, K. Divasajah, J. R. Yankaskas, and R. C. Boucher. 1986. Arachidonic acid metabolism by canine tracheal epithelial cells. *J. Biol. Chem.* 261:12841–12849.
- 12. Goetze, A. M., L. Fayer, J. Bouska, D. Bornmeir, and G. W. Carter. 1985. Purification of mammalian 5-Lipoxygenase from rat basophilic leukemia cells. *Prostaglandins*. 5:689-701.
- 13. Rouzer, C. A., and B. Samuelsson. 1985. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. *Proc. Natl. Acad. Sci. USA*. 82:6040-6444.
- 14. Ueda, N., S. Kaneko, T. Yoshimoto, and T. Yamamoto. 1986. Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids. *J. Biol. Chem.* 261:7982–7988.
- 15. Shimizu, T., O. Rådmark, and B. Samuelsson. 1984. Enzyme with dual lipoxygenase activities catalyzes leukotriene A₄ synthesis from arachidonic acid. *Proc. Natl. Acad. Sci. USA*. 81:689-693.
- 16. Rouzer, C. A., T. Matsumoto, and B. Samuelsson. 1985. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A₄ synthase activities. *Proc. Natl. Acad. Sci. USA.* 82:857-861.
- 17. Bach, M. K., J. R. Brashler, and D. R. Morton. 1984. Solubilization and characterization of the leukotriene C₄ synthetase of rat basophil leukemia cells: a novel, particulate glutathione S-transferase. *Arch. Biochem. Biophys.* 230:455–465.
- 18. Yoshimoto, T., R. J. Soberman, R. A. Lewis, and K. F. Austen. 1985. Isolation and characterization of Leukotriene C₄ synthetase of rat basophilic leukemia cells. *Proc. Natl. Acad. Sci. USA.* 82:8399–8403
- 19. Orning, L., S. Hammarstrom, and B. Samuelsson. 1980. Leukotriene D: a slow reacting substance from rat basophilic leukemia cells. *Proc. Natl. Acad. Sci. USA*. 77:2014–2017.
- Lee, C. W., R. A. Lewis, E. J. Corey, and K. F. Austen. 1983.
 Conversion of leukotriene D₄ to leukotriene E₄ by a dipeptidase re-

- leased from the specific granule of human polymorphonuclear leucytes. *Immunology*. 48:27-35.
- 21. Corey, E. J., D. A. Clark, G. Goto, A. Marfat, C. Mioskowski, B. Samuelsson, and S. Hammarström. 1980. J. Am. Chem. Soc. 102:1436-1439.
- 22. Zamboni, R., S. Milette, and J. Rokach. 1983. The stereospecific synthesis of 14S, 15S-oxido 57, 87, 10E, 12E,-eicosatetraenoic acid. *Tetrahed. Lett.* 24:4899–4902.
- 23. Spur, B., A. Crea, and W. Peters. 1983. Synthesis of leukotriene E₄. Arch. Pharmacol. (Weinheim). 316:789-791.
- 24. Spur, B., A. Crea, W. Peters, and W. Konig. 1984. Synthesis of Leukotrienes C₅, D₅, and E₅. Arch. Pharmacol. (Weinheim). 317:280-282.
- 25. Rokach, J., R. Zamboni, C.-K. Lau, and Y. Guindon. 1981. The stereospecific synthesis of leukotriene A₄ (LTA₄), 5-EPI-LTA₄, and 5-EPI-₄.6EPI-LTA₄. Tetrahed. Lett. 22:2759-2762.
- 26. Corey, E. J., D. A. Clark, and A. Marfat. 1984. *In* The Leukotrienes, Chemistry and Biology. L. W. Chakrin and D. C. Bailey, editors. Academic Press, Inc., Orlando, FL. 14-101.
- 27. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. *J. Biol. Chem.* 193:265-275.
- 28. Habig, W. H., M. J. Pabst, and W. B. Jakoby. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. *J. Biol. Chem.* 249:7130–7139.
- 29. Mannervik, B., H. Jensson, P. Ålin, L. Örning, and S. Hammarström. 1984. Transformation of leukotriene A₄ methyl ester to leukotriene C₄ monomethyl ester by cytosolic rat glutathione transferases. FEBS (Fed. Eur. Biochem. Soc.) Lett. 174:289-293.
- 30. Wu, C. 1986. Conversion of leukotriene A_4 to C_4 in cell-free systems. *Biochem. Biophys. Res. Commun.* 134:85-89.
- 31. Morgenstern, R., J. W. DePierre, and H. Jørnvall, H. 1985. Microsomal glutathione transferases, primary structure. *J. Biol. Chem.* 260:13976–13983.
- 32. Askelof, P., C. Guthenberg, I. Jakobson, and B. Mannervik. 1975. Purification and characterization of two glutathione S-aryltransferase activities from rat liver. *Biochem J.* 147:513-522.
- 33. Rådmark, O., T. Shimizu, H. Jørnvall, and B. Samuelsson. 1984. Leukotriene A₄ hydrolase in human leukocytes. Purification and properties. *J. Biol. Chem.* 259:12339-12345.
- 34. Izumi, T., T. Shimizu, Y. Seyama, N. Ohishi, and F. Takaku. 1986. Tissue distribution of leukotriene A₄ hydrolase activity in guinea pig. *Biochem. Biophys. Res. Commun.* 135:139-145.
- 35. Fitzpatrick, F. A., D. R. Morton, and M. A. Wynalda. 1982. Albumin stabilizes leukotriene A₄. J. Biol. Chem. 257:4680-4683.
- 36. Wynalda, M. A., D. R. Morton, R. C. Kelly, and F. A. Fitzpatrick. 1982. Liquid chromatographic determination of intact leukotriene A₄. Anal. Chem. 54:1079-1082.
- 37. Hammarstrom, S. 1981. Conversion of 5, 8, 11-eicosatrienoic acid to leukotrienes C₃ and D₃. J. Biol. Chem. 256:2275-2279.
- 38. Jakschick, B. A., A. R. Morrison, and H. Sprecher. 1983. Products derived from 5,8,11-eicosatrienoic acid by the 5-lipoxygenase-leukotriene pathway. *J. Biol. Chem.* 258:12797-12800.
- 39. Hammarstrom, S. 1980. Leukotriene C₅ a slow reacting substance derived from eicosapentaenoic acid. *J. Biol. Chem.* 255:7093–7094.
- 40. Evans, J. F., D. J. Nathaniel, R. J. Zamboni, and A. W. Ford-Hutchinson. 1985. Leukotriene A₃, a poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A₄ hydrolase. *J. Biol. Chem.* 260:10966–10970.
- 41. Nathaniel, D. J., J. F. Evans, Y. Leblanc, C. Leveille, B. J. Fitzsimmons, and A. W. Ford-Hutchinson. 1985. Leukotriene A₅ is a substrate and an inhibitor of rat and human neutrophil LTA₄ hydrolase. *Biochem. Biophys. Res. Commun.* 131:827-835.
- 42. Jakoby, N. B. 1978. The glutathione S-transferases: a group of multi-functional detoxification proteins. Adv. Enzymol. 46:383-414.